`-restricted Q-systems and quantum affine algebras

نویسنده

  • Anne-Sophie Gleitz
چکیده

Kuniba, Nakanishi, and Suzuki (1994) have formulated a general conjecture expressing the positive solution of an `-restricted Q-system in terms of quantum dimensions of Kirillov-Reshetikhin modules. After presenting this conjecture, we sketch a proof for the exceptional type E6 following our preprint (2013). In types E7 and E8, we prove positivity for a subset of the nodes of the Dynkin diagram, and we reduce the positivity for the remaining nodes to the conjectural iterated log-concavity of certain explicit sequences of real algebraic numbers. Résumé. Kuniba, Nakanishi et Suzuki (1994) ont formulé une conjecture générale qui exprime la solution positive d’un Q-system `-restreint en fonction des dimensions quantiques de certains modules de Kirillov-Reshetikhin. Après avoir présenté cette conjecture, nous donnons une idée de la preuve pour le type exceptionnel E6, selon notre preprint (arXiv, 2013). En types E7 et E8, nous démontrons la positivité pour certains sommets du diagramme de Dynkin, et nous réduisons la positivité, pour les sommets restants, à une conjecture de log-concavité itérée concernant certaines suites explicites de nombres algébriques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted vertex representations of quantum affine algebras

Recent interests in quantum groups are stimulated by their marvelous relations with quantum Yang-Baxter equations, conformal field theory, invariants of links and knots, and q-hypergeometric series. Besides understanding the reason of the appearance of quantum groups in both mathematics and theoretical physics there is a natural problem of finding q-deformations or quantum analogues of known st...

متن کامل

THE q–CHARACTERS OF REPRESENTATIONS OF QUANTUM AFFINE ALGEBRAS AND DEFORMATIONS OF W–ALGEBRAS

We propose the notion of q–characters for finite-dimensional representations of quantum affine algebras. It is motivated by our theory of deformed W– algebras.

متن کامل

Structures and Representations of Affine q-Schur Algebras

This paper provides a survey for the latest developments in the theory of affine q-Schur algebras and Schur–Weyl duality between affine quantum gln and affine type A Hecke algebras. More precisely, we will establish, on the one side, an isomorphism between the double Ringel–Hall algebra D△(n) of a cyclic quiver △(n) and the quantum loop algebra of gln, and establish, on the other side, explicit...

متن کامل

q-VERTEX OPERATORS FOR QUANTUM AFFINE ALGEBRAS

q-vertex operators for quantum affine algebras have played important role in the theory of solvable lattice models and the quantum KnizhnikZamolodchikov equation. Explicit constructions of these vertex operators for most level one modules are known for classical types except for type C (1) n , where the level −1/2 have been constructed. In this paper we survey these results for the quantum affi...

متن کامل

A Quantum Analogue of Generic Bases for Affine Cluster Algebras

We construct quantized versions of generic bases in quantum cluster algebras of finite and affine types. Under the specialization of q and coefficients to 1, these bases are generic bases of finite and affine cluster algebras.

متن کامل

t–analogs of q–characters of quantum affine algebras of type An, Dn

We give a tableaux sum expression of t–analog of q–characters of finite dimensional representations (standard modules) of quantum affine algebras Uq(Lg) when g is of type An, Dn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014